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A stabilized "nite element formulation is employed to study #ow-induced oscillations of a pair
of equal-sized cylinders in tandem and staggered arrangement placed in uniform incompressible
#ow. Computations, restricted to 2-D, are carried out for Reynolds numbers 100 for various
values of the structural frequency of the oscillator. The cylinders are separated by 5)5 times the
cylinder diameter in the streamwise direction. For the staggered arrangement, the cross-#ow
spacing between the two cylinders is 0)7 times the cylinder diameter. In this arrangement, the
downstream cylinder lies in the wake of the upstream one and therefore experiences an
unsteady in-#ow. Since the spacing between the two cylinders is beyond the critical value for
proximity interference, it is expected that the upstream cylinder behaves like an isolated single
cylinder, while the downstream one experiences wake-induced #utter. The Re"100 #ow leads
to a very organized wake and large amplitude motion is observed for the downstream cylinder.
The trajectory of the upstream cylinder resembles a "gure-of-eight. The downstream cylinder
shows a similar behaviour for the tandem arrangement. However, for the staggered arrange-
ment, the trajectory of the rear cylinder resembles a tilted oval. Soft lock-in is observed in
almost all the cases. ( 2001 Academic Press
1. INTRODUCTION

VORTEX-INDUCED OSCILLATIONS of blu! bodies has been investigated by various researchers
in the last few decades. The interest in this class of problems emanates from its practical
applications in a variety of engineering #ows and also from the need to understand the
complex phenomena exhibited by such systems. The #ow past a stationary single cylinder,
by itself, is associated with very rich vortex dynamics, and signi"cantly di!erent #ow
patterns are observed for various regimes of Reynolds numbers. The behaviour is further
complicated if the cylinder is allowed to oscillate in response to the unsteady #uid forces
acting on it.

The #ow past an oscillating cylinder has been studied by various researchers in the past.
Most of the investigations have been conducted using laboratory experiments. Some
researchers have studied the #ow past a cylinder subjected to forced oscillations, while
others have looked at #ow-induced vibrations. The interested reader is referred to the works
by Toebes (1969), Gri$n (1971), Tanida et al. (1973), Gri$n & Ramberg (1975), King (1977),
Durgin et al. (1980), Chen (1987), Williamson & Roshko (1988), Olinger & Sreenivasan
(1988), Ongoren & Rockwell (1988a,b) and Blevins (1990). There have been fewer e!orts
using computational methods. Some of them are by Lecointe et al. (1987), Mittal et al.
(1991), Mittal & Tezduyar (1992), Mittal & Kumar (1998, 1999), Chang & Sa (1992) and
Cetiner & Unal (1995). A fairly comprehensive computational study for the vortex-induced
oscillations of a single cylinder placed in a uniform #ow has been reported in articles by
Mittal & Tezduyar (1992) and Mittal & Kumar (1998,1999) for Re"325, 1000, 1500 and
0889}9746/01/070717#20 $35.00/0 ( 2001 Academic Press
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104. These articles highlight the various phenomena associated with vortex-induced oscilla-
tions. Lock-in is observed for a range of structural frequencies of the oscillator; the vortex-
shedding frequency of an oscillating cylinder changes to the structural frequency as a result
of the cylinder motion [see Koopmann (1967)]. Lock-in is also responsible for the phenom-
enon of hysteresis. The oscillation amplitude of a given oscillator, for a certain range
of Reynolds number and close to the outer limits of the frequencies of lock-in, depends
on whether the #ow speed is decreased or increased during the experiment. Such
phenomena have also been observed in laboratory experiments (Sarpkaya 1979), and
either low- or high-amplitude oscillations may be realized for the same set of
conditions depending on whether the #ow is achieved by decreasing or increasing the #ow
speed.

The oscillations of the cylinder alter the #ow signi"cantly. In certain cases, the motion of
the cylinder leads to modes of vortex shedding that are very di!erent than the one usually
observed for #ow past a stationary cylinder. Sometimes, a competition between various
modes of vortex shedding is observed. The choice of the mode(s) of vortex shedding is
sensitive to the Reynolds number, oscillation amplitude and the ratio F

s
/F

o
; F

o
is the

vortex-shedding frequency for a stationary cylinder while F
s
is the structural frequency of

the oscillator.
Another interesting feature observed for oscillators whose mass, compared to the mass of

the surrounding #uid displaced by the cylinder is low, is soft lock-in (Mittal & Kumar
1998, 1999). In lock-in, the vortex-shedding frequency of the oscillating cylinder changes
from F

o
to F

s
. However, in soft lock-in, the vortex-shedding frequency of the oscillating

cylinder does not exactly match F
o
; there is a slight detuning. This is one of the mechanisms

of the nonlinear oscillator to self-limit its oscillation amplitude. It has been observed that
the maximum oscillation amplitude of the spring-mass system does not change signi"cantly
even if the mass of the oscillator is reduced by a factor of 100. The time-histories of the #uid
mechanical forces acting on the oscillator get modi"ed to self-limit the vibration amplitude.
Some of the various mechanisms are a reduction in the time varying amplitude of the forces,
introduction of an additional frequency component that acts like a #uid dynamic damping
and the detuning between the structural and the vortex-shedding frequencies.

Fluid dynamic interaction between two stationary cylinders is quite sensitive to their
relative arrangement (Zdravkovich 1977). If the cylinders are far apart, the #ow around
either of them is similar to that of an isolated cylinder. If the cylinders are close or if the
second cylinder is adjacent to or within the wake of the "rst cylinder, the interference
between the two can be one of the three types: proximity interference, wake interference, and
proximity and wake interference. Proximity interference is usually seen for transverse
arrangements and for closely spaced cylinders in staggered arrangements. In this type of
interference, the formation of both vortex streets is a!ected by the two cylinders. Wake
interference occurs for cylinders in tandem and staggered arrangements when the stream-
wise spacing between the two cylinders is su$ciently large. The upstream cylinder is
una!ected by the presence of the downstream cylinder. The downstream cylinder lies in the
wake of the upstream one and therefore su!ers interference e!ects. When the downstream
cylinder is close to the upstream cylinder and lies in its wake, both the cylinders a!ect the
#ow past each other. This results in proximity and wake interference and can occur for
cylinders in tandem and staggered arrangements. The precise boundaries of di!erent
regimes are still not well known.

Some of the research that has gone into the understanding of #ows past cylinders in
various arrangements is reported in articles by Chen (1987), Zdravkovich (1977), Kim
& Durbin (1988), Tokunaga et al. (1992), Williamson (1985), Kiya et al. (1980, 1992) and Wu
& Hu (1993). Some of the interesting phenomena associated with such #ows include coupled
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vortex streets, intermittent vortex shedding and biased #ow that may lead to the #opping of
the wake. Mittal et al. (1997) reported results for a systematic study involving cylinders in
tandem and staggered arrangements with various spacings for Reynolds numbers of 100
and 1000. The wake is very organized at low Reynolds number and temporal periodicity is
observed in all the cases that result in unsteady solutions. Two of the arrangements
simulated by them exhibit wake interference. In one case, the cylinders are arranged in
tandem with their centers separated by 5)5 times the cylinder diameter. In the second case,
the spacing between the cylinders in the #ow direction is the same as before, while the
spacing in cross-#ow direction is 0)7 times the cylinder diameter. In both cases, the
upstream cylinder behaves very similarly to an isolated single cylinder, while the down-
stream one, that lies in the unsteady wake of the "rst one, experiences large unsteady forces.
While the #ow is temporally periodic in the near-wake of the upstream cylinder, the #ow in
the wake of the downstream cylinder does not exhibit such periodicity.

Flow-induced oscillations of two cylinders placed in a uniform #ow is extremely complex
and there have been very few systematic studies to understand such #uid}structure interac-
tions. Most of the investigations, that these authors are familiar with, are based on
laboratory experiments. Zdravkovich (1985) conducted a detailed investigation of #ow-
induced oscillations of two cylinders in various arrangements. The relative locations of
the cylinders span all the three regimes for di!erent types of interference. For each of the
arrangement, the range of reduced velocity ("1/F

s
) for which oscillations occur and the

value for maximum amplitude were measured. The oscillation amplitudes of the two
cylinders depend very strongly on their relative locations. The oscillations of one cylinder
can a!ect the vortex shedding and synchronization (lock-in) of the other. It was observed
that in some cases the displacement of the front cylinder is larger than the rear one, while in
most of the cases the rear cylinder su!ers larger amplitude oscillations. He classi"ed the
response of cylinders in three categories: (i) instability builds up rapidly to large amplitude
primarily in streamwise direction, (ii) instability builds up slowly to a certain amplitude with
oscillations mainly in streamwise direction, and (iii) instability grows gradually to large
oscillation amplitudes primarily in cross-#ow direction. This classi"cation is related to the
three regions of interference.

Jendrzejczyk et al. (1979) have conducted a detailed study with cylinders in tandem and
transverse arrangement with spacing as 1)5 and 1)75 times the cylinder diameter. They
observed four modes of vibration for the various cylinder arrangements, although di!erent
modes are dominant at di!erent values of reduced #ow velocity (1/F

s
). They also observed

that the #uid damping for the cross-#ow vibrations vary with the vibration amplitude of the
cylinders. King & Johns (1976) reported a detailed study for two #exible cylinders in
a tandem arrangement in water #ow. The inter-cylinder spacing, in their investigation,
varied from 1.5 to 7 times the cylinder diameter. In some of the experiments, the cylinders
are coupled to each other via a horizontal member. It is rigid in certain cases and #exible in
others. Three modes of vibration were observed for di!erent ranges of F

s
: the fundamental

mode in-line, the fundamental mode cross-#ow, and the second normal mode in-line. The
choice of modes is sensitive to the Reynolds number. For in-line motion of the cylinders, the
Reynolds number must exceed 1200}1500. Tsui (1977) has proposed a mathematical model
to simulate the wake-induced #utter of a cylinder. However, like several other models
proposed by various researchers in the literature, the modelling of #uid dynamic forces is
quite simple and does not incorporate the dependence on cylinder motion and other related
parameters. Flow past a pair of stationary cylinders, itself, is not very well understood at
this point and, therefore, it is the belief of these authors that it is almost impossible to
construct a general model that predicts the response of the cylinders in any arbitrary
arrangement. Some of the other works on #ow-induced vibrations of two cylinders includes
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articles by Bokaian & Geeola (1984a, b), Knisely & Kawagoe (1990), Matsumoto et al.
(1990) and Chen (1987).

In this article, we report our computational results for #ow-induced oscillations of two
cylinders placed in uniform #ow at Reynolds number 100 in staggered and tandem
arrangements. The cylinders are separated by 5)5 times their diameter in the streamwise
direction. For the case of staggered arrangement, the cross-#ow spacing between the two
cylinders is 0)7 times the cylinder diameter. Both these arrangements correspond to the case
of wake interference. The #ow "elds for the stationary cylinders in these arrangements were
reported in an earlier article (Mittal et al. 1997).

The outline of the rest of the article is as follows. A brief review of the governing equations
for incompressible #uid #ow and for the motion of a rigid body under the in#uence of
unsteady #uid forces is given in Section 2. Section 3 describes the stabilized "nite element
formulation of the governing equations. It is based on the space}time "nite element method
in which the "nite element interpolation functions depend, both on space and time. This
way the deformation of the spatial domain is taken into account automatically. This
method, known as the deforming spatial domain/stabilized space}time (DSD/SST) tech-
nique, was introduced by Tezduyar et al. (1992a,b). Since then, it has been used for a variety
of problems involving #uid}structure interactions and free-surfaces, for example, Mittal
et al. (1991) Mittal & Tezduyar (1994, 1995), Mittal & Kumar (1998, 1999).

To stabilize the computations against spurious numerical oscillations and to enable the
use of equal-order-interpolation velocity}pressure elements the Galerkin/least-squares
(GLS) stabilization technique is employed. Section 3 describes the "nite element formula-
tion incorporating these stabilizing terms. To accommodate the motion of the cylinders,
and therefore the mesh, special mesh-moving schemes are used. Such special purpose
mesh-moving strategies are very quick and allow one to completely do away with remesh-
ing and the associated projection errors. The nonlinear equation systems resulting from the
"nite-element discretization of the #ow equations are solved using the generalized minimal
residual (GMRES) technique (Saad & Schultz 1986) in conjunction with diagonal precondi-
tioners. Results and discussions are presented in Section 4 and we end with some concluding
remarks in Section 5.

2. THE GOVERNING EQUATIONS

Let )
t
LRn

sd and (0, T) be the spatial and temporal domains, respectively, where n
sd

is the
number of space dimensions, and let !

t
denote the boundary of )

t
. The spatial and temporal

coordinates are denoted by x and t. The Navier}Stokes equations governing incompressible
#uid #ow are

oA
Lu
Lt

#u )$u!fB!$ ' r"0 on )
t
for (0,¹), (1)

$' u"0 on )
t
for (0,¹). (2)

Here o, u, f and r are the density, velocity, body force and the stress tensor, respectively. The
stress tensor is written as the sum of its isotropic and deviatoric parts:

r"!pI#T, T"2ke (u), e (u)"1
2
(($u)#($u)T), (3)

where p and k are the pressure and viscosity. Both the Dirichlet and Neumann-type
boundary conditions are accounted for, represented as

u"g on (C
t
)
g
, n' r"h on (C

t
)
h
, (4)
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where (C
t
)
g
and (C

t
)
h
are complementary subsets of the boundary C

t
and n is its unit normal

vector. The initial condition on the velocity is speci"ed on X
t
at t"0:

u (x, 0)"u
0

on X
0
, (5)

where u
0

is divergence free. A solid body immersed in the #uid experiences unsteady forces
and in certain cases may exhibit rigid body motion. The motion of the body, in the two
directions along the cartesian axes, is governed by the following equations:

XG #4nF
4
fXQ #(2nF

s
)2X"

C
D

2M
for (0, T), (6)

>G #4nF
s
f>Q #(2nF

s
)2>"

C
L

2M
for (0, T). (7)

Here, F
s

is the reduced natural frequency of the oscillator, f is the structural damping
coe$cient, M is the nondimensional mass of the body while C

L
and C

D
are the instan-

taneous lift and drag coe$cients for the body, respectively. The free-stream #ow is assumed
to be along the x-axis. X$ , XQ and X denote the normalized in-line acceleration, velocity and
displacement of the body, respectively, while >$ , >Q and > represent the same quantities
associated with the cross-#ow motion. In the present study, in which the rigid body is
a circular cylinder, the displacement and velocity are normalized by the diameter of the
cylinder and the free-stream speed, respectively. The reduced natural frequency of
the system, F

s
is de"ned as 2f

s
a/;

=
, where f

s
is the actual frequency of the oscillator, a is the

radius of the cylinder and;
=

is the free-stream speed of the #ow. The nondimensional mass
of the cylinder is de"ned as M"m

b
/(o

=
a2), where m

b
is the actual mass of the oscillator per

unit length and o
=

is the density of the #uid. It may also be expressed as M"no
s
/o

=
, where

o
s
is the e!ective density of the material of the cylinder. The force coe$cients are computed

by carrying an integration, that involves the pressure and viscous stresses, around the
circumference of the cylinder:

C
D
"

1
1
2
o
=
;2

=
2a PC

#:-

(rn)' n
x
d!, (8)

C
D
"

1
1
2
o
=
;2

=
2a PC

#:-

(rn)' n
y
d!, (9)

Here, nx and ny are the Cartesian components of the unit vector n that is normal to the
cylinder boundary !

#:-
. These coe$cients include the #uid dynamic damping and the added

mass e!ect. The initial conditions for the displacement and velocity of the cylinder are
speci"ed at t"0:

X(0)"X
0
, XQ (0)"XQ

0
, (10)

>(0)">
0
, >Q (0)">Q

0
. (11)

The equations governing the #uid #ow are solved in conjunction with those for the
motion of each of the two cylinders. The force acting on the body is calculated by
integrating the #ow variables on the body surface. The resulting drag and lift coe$cients are
used to compute the displacement and velocity of the body which are then used to update
the location of the body and the no-slip boundary condition for the velocity "eld on the
body surface.
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3. FINITE ELEMENT FORMULATION

To accommodate the motion of the cylinder and the deformation of the mesh, the stabilized
"nite element formulation is employed. In order to construct the "nite element function
spaces for the space}time method, we split the time interval (0,¹) into subintervals
I
n
"(t

n
, t

n`1
), where t

n
and t

n`1
belong to an ordered series of time levels:

0"t
0
(t

1
(2(t

N
"¹. Let X

n
"X

tn
and C

n
"C

tn
. We de"ne the space-time slab Q

n
as

the domain enclosed by the surfaces X
n
, X

n`1
, and P

n
, where P

n
is the surface described by

the boundary C
t
as t traverses I

n
. As is the case with C

t
, the surface P

n
is decomposed into

(P
n
)
g
and (P

n
)
h
with respect to the type of boundary condition (Dirichlet or Neumann) being

imposed. For each space}time slab we de"ne the corresponding "nite element function
spaces: (Shu)n, (Vhu)n, (Sh

p
)
n
, and (Vh

p
)
n
. Over the element domain, this space is formed by

using "rst-order polynomials in space and time. Globally, the interpolation functions are
continuous in space but discontinuous in time.

The stabilized space}time formulation for deforming domains is then written as follows:
given (uh)

n
~, "nd uh3(Shu)n and ph3(Sh

p
)
n
such that ∀wh3(Vhu)n, qh3(Vh

p
)
n
,

PQ
n

wh' oA
Luh

Lt
#uh'$uh!fB dQ#PQ

n

e(wh) : r (ph , uh ) dQ#PQ
n

qh$' uhdQ

#

n
el

+
e/1
PQe

n

1
o

qCoA
Lwh

Lt
#uh'$whB!$ ' r (qh,wh)D .

CoA
Luh

Lt
#uh'$uh!fB!$ 'r (ph, uh)DdQ

#

n
el

+
e/1
PQe

n

d$ 'wh o$ ' uh dQ#PX
n

(wh)`
n
.

o ((uh)`
n
!(uh )~

n
) dX"P(P

n
)h

wh ' hhdP. (12)

This process is applied sequentially to all the space}time slabs Q
0
, Q

1
,2, Q

N~1
. In the

variational formulation given by equation (12), the following notation is being used:

(uh)$n "lim
eP0

u (t
n
$e), (13)

PQ
n

(2) dQ"PI
n
PX

n

(2) dXdt, (14)

PP
n

(2) dP"PI
n
PC

n

(2) dCdt. (15)

The computations start with

(uh)~
0
"u

0
, (16)

where u
0

is divergence-free.
In the variational formulation given by equation (12), the "rst three terms and the

right-hand side constitute the Galerkin formulation of the problem. The series of element-
level integrals involving the coe$cients q and d are the least-squares terms that are added to
the basic Galerkin formulation to ensure the stability of the computations. This type of
stabilization is referred to as the Galerkin/least-squares (GLS) procedure and is a generaliz-
ation of the Streamline-upwind/Petrov}Galerkin (SUPG) and pressure-stabilizing/
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Petrov}Galerkin (PSPG) methods (Tezduyar et al. 1992). In the current formulation, q and
d are given as

q"AA
2EuhE

h B
2
#A

4l
h2B

2

B
~1@2

, (17)

d"
h
2

EuhEz, (18)

where

z"G
(1
3
Re

u
) Re

u
43

1 Re
u
'3

,

and Re
u
is the cell Reynolds number. Both stabilization terms are weighted residuals, and

therefore maintain the consistency of the formulation. The sixth term in equation (12)
enforces weak continuity of the velocity "eld across the space}time slabs.

The equations of motion for the oscillator given by (6)}(11) are also cast in the space}time
formulation in the same manner as described in the work by Tezduyar et al. (1992) and
Mittal (1992).

4. RESULTS AND DISCUSSION

All the computations reported in this article are carried out on the Digital work-stations at
IIT Kanpur in 64 bit precision. Equal-in-order basis functions for velocity and pressure,
that are bilinear in space and linear-in-time, are used and 2]2]2 Gaussian quadrature is
employed for numerical integration. The nonlinear equation systems resulting from the
"nite-element discretization of the #ow equations are solved using the generalized minimal
residual (GMRES) technique (Saad & Schultz 1986) in conjunction with diagonal precondi-
tioners.

The two equal-sized cylinders, of unit radii, reside in a rectangular computational domain
whose upstream and downstream boundaries are located at 5 and 30 cylinder diameters,
respectively, from the centre of the upstream cylinder. The upper and lower boundaries are
placed at 10 diameters, each, from the centre of the "rst cylinder. The no-slip condition is
satis"ed for the velocity on the cylinder wall and free-stream values are assigned for the
velocity at the upstream boundary. At the downstream boundary, we specify a Neumann-
type boundary condition for the velocity that corresponds to zero viscous stress vector. On
the upper and lower boundaries, the component of velocity normal to and the component of
stress vector along these boundaries is the prescribed zero value. Computations are carried
out for two di!erent relative locations of the cylinders and Reynolds number 100. Reynolds
number is based on the diameter of the cylinders, free-stream velocity and the viscosity of
the #uid. The nondimensional distance between the centres of the two cylinders is denoted
by P/D in the #ow direction and by ¹/D in the cross-#ow direction as shown in Figure 1. In
the rest of the article we will refer to the upstream cylinder as cylinder 1 and to the
downstream one as cylinder 2. The quantities with su$x 1 are associated with cylinder 1,
while those with su$x 2 are for cylinder 2. Computations are carried out for two sets of
cylinder arrangements. In one case, the two cylinders are arranged in tandem with ¹/D"0
and P/D"5)5, while the other case is that of staggered arrangement with ¹/D"0)7 and
P/D"5)5. The results for #ow past stationary cylinders in these arrangements have been
reported in an earlier article (Mittal et al. 1997). Here, results are presented for the
vortex-induced oscillations of the two cylinders for various values of the structural



Figure 1. Description of the relative location of the two cylinders.

Figure 2. Flow past two cylinders in staggered arrangement, ¹/D"0)7, P/D"5)5: "nite element
mesh with 8552 nodes and 8327 elements.
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frequency of the spring-mass oscillator (F
s
) that are either equal or close to the vortex-

shedding frequency for the stationary cylinders (F
o
).

The #ow calculations are carried out on a "nite element mesh with 8552 nodes and 8327
quadrilateral elements. A picture of the mesh and its close-up is shown in Figure 2. Later, in
the article, results are also presented for a more re"ned mesh to establish convergence of the
computed results. The mesh has been designed to accommodate a mesh-moving scheme
that eliminates the need for re-meshing. As can be observed from Figure 2, each of the two
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cylinders resides in a square box. The mesh within these boxes moves as a rigid body along
with the cylinders. The external boundary of the domain is "xed and the motion of
the cylinders is accounted for by relocating the nodes outside the square boxes. Therefore,
the mesh close to the cylinders does not undergo any deformation and contributes to the
accuracy of the resulting solution by preserving the gradients in the boundary/shear layers
close to the solid body. It should be noted that with this mesh-moving scheme the
connectivity of the mesh remains unaltered throughout the computations, thereby, elimin-
ating the need for complex data structure(s).

The initial condition for all the computations is the fully developed unsteady solution
past stationary cylinders in the same arrangement and at the same Reynolds number. The
initial displacement and velocity of the two cylinders, in cross-#ow and in-line directions, is
assumed to be zero. At higher Reynolds numbers many of these #ows are expected to have
three-dimensional e!ects (Williamson 1996). For example, it was reported in Mittal et al.
(1997) that compared to experimental results and those from 3-D calculations, 2-D compu-
tations for Re"1000 that #ow past a stationary cylinder overpredict the mean drag
coe$cient and the Strouhal number related to the vortex-shedding frequency. The non
dimensional mass of each of the two cylinders is M"4)7273 and the structural damping
coe$cient is f"3)3]10~4. These parameter values are same as those used for the studies
involving single cylinder by Mittal & Kumar (1998, 1999).

4.1. FLOW PAST TWO CYLINDERS IN TANDEM ARRANGEMENT; ¹/D"0, P/D"5)5

The solution for #ow past stationary cylinders in this arrangement was reported in an
earlier article (Mittal et al. 1997). The wake is quite organized and temporal periodicity is
observed in the fully developed unsteady solution. The vortex shedding from the two
cylinders is almost antiphase, i.e., as the "rst cylinder sheds a vortex from the upper surface,
the second one sheds a counter-rotating one from the lower surface. The vortex-shedding
frequency for the stationary cylinders (F

o
) is 0.168. This value is quite close to that for

a single cylinder at the same Reynolds number. Figure 3 shows the time histories of the lift
and drag coe$cients and the response of the cylinders for F

s
"0)168 ("F

o
) for the fully

developed solution. The response of the upstream cylinder is very similar to that of a single
cylinder as reported by Mittal & Kumar (1998). The trajectory of the cylinder corresponds
to a Lissajous "gure-of-eight. The approximate values of the amplitude of the cross-#ow
and in-line oscillations are, respectively, 0)6 and 0)04 times the cylinder diameter. Compared
to the stationary cylinder, the oscillating cylinder exhibits larger values of the mean and
amplitude of the time-varying component of the drag coe$cient and a smaller amplitude of
the lift coe$cient. The downstream cylinder lies in the unsteady wake of the upstream
cylinder and experiences a galloping/#utter type of instability. The amplitudes of the
cylinder oscillations are larger for the downstream cylinder. Beats can be observed in the
time-histories of the lift and drag coe$cients and response of the cylinder.

It is interesting to note that the nondimensional frequency associated with the variation
of the lift coe$cients and the cross-#ow oscillations of both the cylinder is 0)157. This
detuning between the structural frequency and the vortex-shedding frequency has been
observed for single cylinders as well (Mittal & Kumar 1999; Cetiner & Unal 1995) and is
one of the mechanisms of the oscillator to self-limit its oscillation amplitude. Mittal
& Kumar (1999) have referred to this phenomenon as soft lock-in. The detuning between
the structural and vortex-shedding frequency reduces if the oscillator mass is increased.
Figure 4 shows the pressure and vorticity "elds at two time instants that correspond to the
peak value of the cross-#ow displacement of the downstream cylinder. The lower row of
"gures are for large values, while the upper row corresponds to the smaller values of the



Figure 3. Re"100 #ow past two oscillating cylinders with F
s
"0)168 ("F

o
) in tandem arrange-

ment, ¹/D"0, P/D"5)5: time-histories of the drag and lift coe$cients and the response of the
cylinders.
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amplitude of oscillations. The two sets of #ow pictures are signi"cantly di!erent from each
other. In the case of high-amplitude oscillations, a counter-clockwise rotating vortex
released from the lower surface of the upstream cylinder is located below the lower surface
of the downstream cylinder while it is at its peak location. This results in a low-pressure
region on the lower surface of the downstream cylinder and causes it to exhibit large



Figure 4. Re"100 #ow past two oscillating cylinders with F
s
"0)168 ("F

o
) in tandem arrange-

ment, ¹/D"0, P/D"5)5: vorticity (left) and pressure (right) "elds at the peak value of the cross-#ow
displacement of the downstream cylinder. The top row is for small, while the bottom row is for large

amplitude oscillations.

Figure 5. Re"100 #ow past two oscillating cylinders with F
s
"0)234 ("1)4F

o
) in tandem

arrangement, ¹/D"0, P/D"5)5: vorticity (left) and pressure (right) "elds at the peak value of the
cross-#ow displacement of the upstream cylinder.
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amplitude oscillations. No such phenomenon is observed for the upper set of pictures that
correspond to the lower amplitude of oscillations.

For F
s
"0)234 ("1)4F

o
), the upstream cylinder still behaves like a single cylinder while

the downstream cylinder exhibits oscillations of much lower amplitude, primarily, in the
cross-#ow direction. The nondimensional frequency associated with the temporal variation
of the lift coe$cient and cross-#ow response of both the cylinders is 0)191. Figure 5 shows
the pressure and vorticity "elds at a time instant that corressponds to the peak cross-#ow
location of the upstream cylinder for the fully developed solution. Qualitatively, the #ow is
very similar to the one in the earlier case. The vortex-shedding frequency for the present



Figure 6. Re"100 #ow past two oscillating cylinders with F
s
"0)165 ("F

o
) in staggered

arrangement, ¹/D"0)7, P/D"5)5: time-histories of the drag and lift coe!icients and the response of
the cylinders.

728 S. MITTAL AND V. KUMAR
case is much higher and the vortices shed by the upstream cylinder do not hit the
downstream cylinder but are convected close to its surface. Compared to the previous case,
the downstream exhibits lower amplitude oscillations.



Figure 7. Re"100 #ow past two oscillating cylinders with F
s
"0)165 ("F

o
) in staggered

arrangement, ¹/D"0)7, P/D"5)5: vorticity (left) and pressure (right) "elds at the peak value of the
cross-#ow displacement of the upstream cylinder.

TWO CYLINDERS IN TANDEM AND STAGGERED ARRANGEMENTS 729
4.2. FLOW PAST TWO CYLINDERS IN STAGGERED ARRANGEMENT; ¹/D"0)7, P/D"5)5

The staggered arrangement of cylinders is the one that is most likely to occur in an
engineering situation, for example, in heat exchangers and other cooling systems involving
tube bundles. Experimental investigations for such arrangements with stationary cylinders
have been reported by various researchers in the past, for example, by Chen (1987),
Zdravkovich (1977) and Kiya et al. (1980). Numerical simulations of such #ows for
Re"100 and 1000 were reported by Mittal et al. (1997) and for past periodic arrays of
cylinders at Re"100 by Johnson et al. (1993).

The vortex shedding from the two cylinders in this arrangement is almost synchronized
(Mittal et al. 1997). The counterclockwise rotating vortices that are shed from the lower
surface of the upstream cylinder pass below the downstream cylinder and interact with the
counterclockwise rotating vortex shed from its lower surface. The two coalesce downstream
and one can observe a row of counter-clockwise rotating vortices that are elongated along
the #ow direction. The clockwise rotating vortices that are shed from the upper surface of
the upstream cylinder hit the rear one and split into two. The one that glides along the lower
surface gets di!used quite soon, while the one that moves towards the upper surface of the
downstream cylinder interacts with its clockwise rotating vortex. This interaction produces
a stronger vortex that is shed from the upper surface of the second cylinder and a row of
such vortices is observed in the wake. The vortex-shedding frequency for both the cylinders
in this arrangement is F

o
"0)165.

Figure 6 shows the time histories of the lift and drag coe$cients and the response of the
cylinders for F

s
"0)165 ("F

o
) for the fully developed solution. The response of the

upstream cylinder is very similar to that of a single cylinder as reported by Mittal & Kumar
(1998). The lift coe$cient varies with a nondimensional frequency of 0)155 and the drag
oscillates at twice this frequency. Consequently, the trajectory of the cylinder corresponds to
a Lissajous "gure-of-eight. The behaviour of the downstream cylinder is, however, signi"-
cantly di!erent. Beats can be observed in the time-histories of the various quantities for the
second cylinder. The dominant frequency in the time variation of the lift coe$cient and
cross-#ow vibrations is 0)155. The drag coe$cient also varies with the same frequency.
Therefore, the trajectory of the cylinder is more like a tilted oval rather than the "gure of
8 that is usually observed. The amplitude of the in-line oscillations is much larger than that
observed for the tandem arrangement. Soft lock-in is observed for both the cylinders.
Figure 7 shows the pressure and vorticity "elds at a time instant that corressponds to the
peak cross-#ow location of the upstream cylinder for the fully developed solution. The



Figure 8. Re"100 #ow past two oscillating cylinders with F
s
"0)18 ("1)09F

o
) in staggered

arrangement, ¹/D"0)7, P/D"5)5: time-histories of the drag and lift coe!icients and the response of
the cylinders.
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qualitative nature of the vortex dynamics is similar to that observed for stationary cylinders
in this arrangement.

The time histories of the various quantities and the #ow pictures for F
s
"0)18 ("1)09F

o
)

are shown in Figures 8 and 9, respectively. The behaviour of the system is very similar to



Figure 9. Re"100 #ow past two oscillating cylinders with F
s
"0)18 ("1)09F

o
) in staggered

arrangement, ¹/D"0)7, P/D"5)5: vorticity (left) and pressure (right) "elds at the peak value of the
cross-#ow displacement of the downstream cylinder. The top row is for small, while the bottom row is

for large amplitude oscillations.
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that observed for F
s
"F

o
. The #ow pictures in Figure 9 correspond to the time instant when

the downstream cylinder is at the peak value of the cross-#ow displacement. The upper row
is for small-amplitude vibrations, while the second row is for large-amplitude oscillations.
In both sets of pictures, the vortex shed from the upstream cylinder is positioned below the
downstream one and creates a local suction that pulls the cylinder towards it. For the
large-amplitude solution this is augmented by a stronger vortex shedding from the second
cylinder.

Figure 10 shows the time-histories of the lift and drag coe$cients and the response of the
cylinders for F

s
"0)33 ("2F

o
), for the fully developed solution. The oscillation amplitude

of the two cylinders is signi"cantly smaller than those in the previous cases. The upstream
cylinder oscillates primarily in the cross-#ow direction. The beats, observed in the earlier
cases for the response of the downstream cylinder, are not seen in the present solution.
However, as before, the dominant frequency in the variation of drag coe$cient for the
downstream cylinder is the same as that for the lift coe$cient. In the case of upstream
cylinder, the drag coe$cient oscillates with twice the frequency of the variation of the lift
coe$cient. The trajectory of the upstream cylinder resembles a slender eight while that of
the downstream cylinder resembles the shape of a banana.

Also shown in the same "gure are the time histories obtained with a more re"ned "nite
element mesh and with a smaller time step. The re"ned mesh consists of 20 015
nodes and 19 648 elements. It can be observed that the two solutions are quite close. In
fact, the time-histories of the displacements of the two cylinders obtained from the



Figure 10. Re"100 #ow past two oscillating cylinders with F
s
"0)33 ("2F

o
) in staggered

arrangement, ¹/D"0)7, P/D"5)5: time-histories of the drag and lift coe!icients and the response of
the cylinders (mesh A in solid lines and mesh B in broken lines). Mesh A contains 8552 nodes and 8327

elements while Mesh B consists of 20 015 nodes and 19 648 elements.
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two computations are almost indistinguishable. This demonstrates that the original mesh
and time step are adequate to carry out the computations for this #ow problem. The spatial
as well as temporal convergence of the present results is, therefore, established. Figure 11
shows the pressure and vorticity "elds at a time instant that corressponds to the peak



Figure 11. Re"100 #ow past two oscillating cylinders with F
s
"0)33 ("2F

o
) in staggered

arrangement, ¹/D"0)7, P/D"5)5: vorticity (left) and pressure (right) "elds at the peak value of the
cross-#ow displacement of the upstream cylinder.

Figure 12. Summary of the #ow past two oscillating cylinders. Results for cylinders in tandem
(P/D"5)5, ¹/D"0) are on the left and those for the staggered arrangement (P/D"5)5, ¹/D"0)7)
are on the right. The trajectory of the centre of the cylinders is shown in solid lines while the initial
location of the cylinders is shown in dotted lines. Also shown are the dominant frequencies for the time

variation of the lift coe$cients and the cross-#ow oscillations of the two cylinders.
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cross-#ow location of the upstream cylinder for the fully developed solution. The #ow
pictures are almost identical to that for stationary cylinders. The vortex-shedding frequency
for both the cylinders is 0.167 which is very close to F

o
.
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5. CONCLUSIONS

A numerical study has been carried out to study the #ow-induced vibrations of a pair of
cylinders in tandem and staggered arrangements at Re"100. The cylinders are separated
by 5)5 times the cylinder diameter in the streamwise direction. For the staggered arrange-
ment, the spacing between the two cylinders is 0)7 times the cylinder diameter. As reported
by researchers earlier, these arrangements of cylinders fall in the regime of wake interfer-
ence. A summary of the results from the computations for various values of the nondimen-
sional structural frequency (F

s
) is shown in Figure 12. The downstream cylinder lies in the

wake of the upstream cylinder and experiences wake-induced #utter. In almost all the cases
the upstream cylinder responds like an isolated single cylinder. Soft lock-in is observed in
many cases; the vortex-shedding frequency of the cylinders is detuned from the structural
frequency. This is usually observed when the cylinder is immersed in a heavier #uid (like
water) and the mass of the oscillator is not too large compared to the mass of the
surrounding #uid it displaces. It has been shown earlier that, as the mass of the oscillator is
increased, the detuning between the two frequencies reduces and eventually lock-in is
observed. At such low Reynolds numbers the wake of the cylinder is extremely organized
and very large amplitude oscillations are observed for the downstream cylinder. The
trajectory of the upstream cylinder resembles a "gure-of-eight. For the tandem arrange-
ment, the downstream cylinder also shows similar oscillations. However, for the staggered
arrangement, the trajectory of the downstream cylinder appears like a tilted oval. For an
isolated single cylinder, the large amplitude of cross-#ow vibrations occurs for a range of
values of F

s
that is usually centred around F

s
"F

o
. The maximum amplitude for wake-

induced #utter may not occur at F
s
"F

o
, especially at higher Reynolds numbers. In certain

cases, the oscillations of the cylinders result in an alternate mode of vortex shedding.

ACKNOWLEDGEMENTS

This work was partially supported by the Department of Science and Technology, India
under the Project No. DST-AE-95279 with Department of Aerospace Engineering, IIT
Kanpur.

REFERENCES

BLEVINS, R. D. 1990 Flow-Induced <ibration. New York: Van Nostrand Reinhold.
BOKAIAN, A. & GEEOLA, F. 1984a Wake-induced galloping of two interfering circular cylinders.

Journal of Fluid Mechanics 146, 383}415.
BOKAIAN, A. & GEEOLA, F. 1984b Wake-induced galloping of two interfering circular cylinders.

Journal of Fluid Mechanics 146, 417}449.
CETINER, N. L. O. & UNAL, M. F. 1995 A discrete vortex study of vortex-induced oscillations of

a circular cylinder. In Numerical Methods in ¸aminar and ¹urbulent Flow (eds C. Taylor &
P. Durbetaki). Vol. 9, pp. 1467}1478. Swansea. U.K.: Pineridge Press.

CHANG, K. S. & SA, J. Y. 1992 Patterns of vortex shedding from an oscillating circular cylinder. AIAA
Journal 30, 1331}1336.

CHEN, S. S. 1987 Flow-Induced <ibrations of Circular Cylindrical Structures. New York: Hemisphere
Publishing Corporation.

DURGIN, W. W., MARCH, P. A. & LEFEBVRE, P. J. 1980 Lower mode response of circular cylinders in
cross-#ow. ASME Journal of Fluids Engineering, 102, 183}190.

GRIFFIN, O. M. 1971 The unsteady wake of an oscillating cylinder at low Reynolds number. Journal of
Applied Mechanics 38, 729}738.

GRIFFIN, O. M. & RAMBERG, S. E. 1975 Vortex sheddding from a cylinder vibrating in line with an
incident uniform #ow. Journal of Fluid Mechanics, 75, 257}271.

JENDRZEJCZYK, J. A., CHEN, S. S., & WAMBSGANSS, M. W. 1979 Dynamic response of a pair of
circular tubes subjected to liquid cross #ow. Journal of Sound and <ibration 67, 263}273.



TWO CYLINDERS IN TANDEM AND STAGGERED ARRANGEMENTS 735
JOHNSON, A. A., TEZDUYAR, T. E. & LIOU, J. 1993 Numerical simulation of #ows past periodic arrays
of cylinders. Computational Mechanics 11, 371}383.

KIM, H. J. & DURBIN, P. A. 1988 Investigation of the #ow between a pair of circular cylinders in the
#opping regime. Journal of Fluid Mechanics 196, 431}448.

KING, R. 1977 A review of vortex shedding research and its application. Ocean Engineering 4, 141}171.
KING, R. & JOHNS, D. J. 1976 Wake interaction experiments with two #exible cirular cylinders in
#owing water. Journal of Sound and <ibration 45, 259}283.

KIYA, M., ARIE, M., TAMURA, H., & MORI, H. 1980 Vortex shedding from two circular cylinders in
staggered arrangement. ASME Journal of Fluids Engineering 102, 166}173.

KIYA, M., MOCHIZUKI, O., IDO, Y., SUZUKI, T. & ARAI, T. 1992 Flip-#opping #ow around two blu!
bodies in tandem arrangement. In Blu+-Body =akes, Dynamics and Instabilities (eds H.
Eckelmann, J. M. R. Graham, P. Huerre & P. A. Monkewitz) IUTAM Symposium, pp. 15}18,
GoK ttingen: Springer}Verlag.

KNISELY, C. W. & KAWAGOE, M. 1990 Force}displacement measurements on closely spaced tandem
cylinders. In Blu+ Body Aerodynamics and its Applications (eds M. Ito, M. Matsumoto &
N. Shiraishi) pp. 81}90. Amsterdam: Elsevier.

KOOPMANN, G. H. 1967 The vortex wakes of vibrating cylinders at low Reynolds numbers. Journal of
Fluid Mechanics 28, 501}512.

LECOINTE, Y., PIQUET, J. & PLANTEC, J. 1987 Flow structure in the wake of an oscillating cylinder. In
Forum on ;nsteady Flow Separation (ed. K. N. Ghia) FED-52, pp. 147}157. New York: ASME.

MATSUMOTO, M., SHIRAISHI, N. & SHIRATO, H. 1990 Aerodynamic instabilities of twin circular
cylinders. In Blu+ Body Aerodynamics and its Applications (eds M. Ito, M. Matsumoto &
N. Shiraishi) pp. 91}100. Amsterdam: Elsevier.

MITTAL, S. 1992 Stabilized space}time ,nite element formulations for unsteady incompressible -ows
involving -uid}body interactions Ph.D. Thesis, University of Minnesota, U.S.A.

MITTAL, S. & KUMAR, V. 1998 Flow induced vibrations of a light circular cylinder at Reynolds
numbers 103 to 104. Journal of Sound and <ibration, accepted.

MITTAL, S. & KUMAR, V. 1999 Finite element study of vortex-induced cross-#ow and in-line
oscillations of a circular cylinder at low Reynolds numbers. International Journal for Numerical
Methods in Fluids 31, 1087}1120.

MITTAL, S., KUMAR, V. & RAGHUVANSHI, A. 1997 Unsteady incompressible #ow past two cylinders in
tandem and staggered arrangements. International Journal for Numerical Methods in Fluids 25,
1315}1344.

MITTAL, S., RATNER, A., HASTREITER, D. & TEZDUYAR, T. E. 1991 Space}time "nite element
computation of incompressible #ows with emphasis on #ows involving oscillating cylinders.
International <ideo Journal of Engineering Research 1, 83}96.

MITTAL, S. & TEZDUYAR, T. E. 1992 A "nite element study of incompressible #ows past oscillating
cylinders and airfoils. International Journal for Numerical Methods in Fluids 15, 1073}1118.

MITTAL, S. & TEZDUYAR, T. E. 1994 Massively parallel "nite element computation of incompressible
#ows involving #uid}body interactions. Computer Methods in Applied Mechanics and Engineering
112, 253}282.

MITTAL, S. & TEZDUYAR, T. E. 1995 Parallel "nite element simulation of 3D incompressible #ows:
#uid}structure interactions. International Journal for Numerical Methods in Fluids 21, 933}953.

OLINGER, D. J. & SREENIVASAN, K. R. 1988 Nonlinear dynamics of the wake of an oscillating cylinder.
Physical Review ¸etters 60, 797}800.

ONGOREN, A. & ROCKWELL, D. 1988a Flow structure from an oscillating cylinder. Part 1: Mecha-
nisms of phase shift and recovery in the near wake. Journal of Fluid Mechanics 191, 197}223.

ONGOREN, A. & ROCKWELL, D. 1988b Flow structure from an oscillating cylinder. Part 2: Mode
competition in the near wake. Journal of Fluid Mechanics 191, 225}245.

SAAD, Y. & SCHULTZ, M. 1986 GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal of Scienti,c and Statistical Computing 7, 856}869.

SARPKAYA, T. 1979 Vortex-induced oscillations: a selective review. Journal of Applied Mechanics 46,
241}258.

TANIDA, Y., OKAJIMA, A. & WATANABE, Y. 1973. Stability of a circular cylinder in uniform #ow or in
a wake. Journal of Fluid Mechanics 61, 769}784.

TEZDUYAR, T. E., BEHR, M. & LIOU, J. 1992a A new strategy for "nite element computations
involving moving boundaries and interfaces*the deforming-spatial-domain/space}time proced-
ure: I. The concept and the preliminary tests. Computer Methods in Applied Mechanics and
Engineering 94, 339}351.



736 S. MITTAL AND V. KUMAR
TEZDUYAR, T. E., BEHR, M., MITTAL, S. & LIOU, J. 1992b A new strategy for "nite element
computations involving moving boundaries and interfaces*the deforming-spatial-
domain/space-time procedure: II. Computation of free-surface #ows, two-liquid #ows, and #ows
with drifting cylinders. Computer Methods in Applied Mechanics and Engineering 94, 353}371.

TEZDUYAR, T. E., MITTAL, S., RAY, S. E. & SHIH, R. 1992 Incompressible #ow computations with
stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Computer
Methods in Applied Mechanics and Engineering 95, 221}242.

TOEBES, G. H. 1969 The unsteady #ow and wake near an oscillating cylinder. ASME Journal of Basic
Engineering 91, 493}505.

TOKUNAGA, H., TANAKA, T. & SATOFUKA, N. 1992 Numerical simulation of viscous #ows along
multiple bodies by generalized vorticity-stream function formulation. Computational Fluid
Dynamics Journal 1, 58}66.

TSUI, Y. T. 1977 On wake-indiced #utter of a circular cylinder in the wake of another. Journal of
Applied Mechanics, ¹ransactions of the ASME 99, 194}200.

WILLIAMSON, C. H. K. 1985 Evolution of a single wake behind a pair of blu! bodies. Journal of Fluid
Mechanics 159, 1}18.

WILLIAMSON, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics
28, 477}539.

WILLIAMSON, C. H. K. & ROSHKO, A. 1988 Vortex formation in the wake of an oscillating cylinder.
Journal of Fluids and Structures 2, 355}381.

WU, J. C. & HU, Y. C. 1993 Flow characteristics of tandem circular cylinders: E!ects of diameter ratio
and longitudinal spacing. AIAA Paper 93-3088, AIAA 24th Fluid Dynamics Conference,
Orlando, FL, U.S.A.

ZDRAVKOVICH, M. M. 1977 Review of #ow interference between two circular cylinders in various
arrangements. ASME Journal of Fluids Engineering 99, 618}633.

ZDRAVKOVICH, M. M. 1985 Flow induced oscillations of two interfering circular cylinders. Journal of
Sound and <ibration 101, 511}521.


	1. INTRODUCTION
	2. THE GOVERNING EQUATIONS
	3. FINITE ELEMENT FORMULATION
	4. RESULTS AND DISCUSSION
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	5. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

